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NEUTRON SELF-SHIEIDING FACTORS FOR MULTIPLE-BODY
CONCENTRIC CYLINDRICAL CONFIGURATIONS
by Thor T. Semler

Lewis Research Center

SUMMARY

Monte Carlo calculations of the self-shielding factors for multiple-body
concentric cylindrical geometries are made and the results are compared with
the rational approximation and other analytic results. The blackness for a
monoenergetic neutron flux incident upan an infinite length cylindrical shell
of absorber with central internal rods of absorber and multiple concentric ring
configurations are calculated by means of the Monte Carlo method. A cosine
incident-angular-neutron distribution and one collision model are chosen. The
probability of absorption is calculated for thin shell and central rod combi-
nations and for multiple concentric cylinders for a range of macroscopic ab-
sorption cross sections.

The self-ghielding factors computed for these configurations are compared
with the results of the rational approximation as well as other analytic re-
sults. Ior large variations in internal structure the self-shielding factors
show large deviations from the rational approximation and from exact calecula-
tions for equivalent solid rods. For multiple concentric annuli, however, the
correlation of self-shielding factor with volume-to-surface ratio is quite pre-
cise and agrees with the corresponding equivalent solid rod.

To further illustrate the technique, a Monte Carlo calculation is made for
the blackness of arrays of concentric cylinders for a single Breit Wigner reso-
nance absorber exposed to a neutron slowing-down distribution.

INTRODUCTION

In the design of heterogeneous nuclear reactors 1t is essential to have
convenient and accurate means for estimating self-shielding effects. If the
geometry of the region for which the self-shielding factor is sought is moder-
ately complex, the calculation of this parameter becomes difficult if not im-
possible to compute by analytic means. For lumped absorbers of arbitrary shape
and mass distribution, various approximations (refs. 1 and 2) have been used
with varying degrees of success. Perhaps the most widely used approximation
has been the rational approximation of Wigner, et al. (ref. 2). The rational
approximation asserts that, for a spatially uniform isotropic source of neutrons



in a volume V, the escape probability P, may be estimated by the formula

1
P, =
o]

where Zt 1s the total macroscopic cross section and V/S is the volume-to-
surface ratio of the lump with 4V/S corresponding to the average chord
length. The rational approximation, however, is subJject to as much as 18 per-
cent error (ref. 1) for cylindrical rods. The error associated with the use of
the rational approximation to determine the self-shielding of cylindrical
shells is likewise rather large. The precision of available methods for the
calculation of self-shielding factors for a configuration of concentric cylin-
drical shells is unknown. The present calculations have been made by Monte
Carlo methods to ascertain the validity of the correlation of the V/S ratio
to the self-shielding factor for large variations in the internal structure of
infinitely long multiple-body concentric cylindrical configurations. To fur-
ther illustrate the utility of the Monte Carlo technique, a blackness factor
averaged over a single-level Breit-Wigner resonance 1s computed for an array of
concentric hollow cylinders.

A Monte Carlo Fortran IV code that conveniently handles complex cylindri-
cal geometries has been written and used in the present analysis. A non-
scattering model has been used with a cosine angular-neutron-flux distribution

incident upon the cylindrical arrays.

SYMBOLS
B energy, ev
Emin’Emax minimum and maximum energy considered
Epneu energy of neutron
Fy self-shielding factor
f optical length through cylinder
m number of annuli
N. rth random number whose range is 0.0 to 1.0
n number of neutron histories
P probability of nontransmission
Py escape probabllity
R distance from point to center of cylindrical assembly
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outside radius of shell

inside radius of shell

radius of internal rod

outside radius of single annulus (fig. 11)
inside radius of single annulus (fig. 11)
outside radius of i®Hm annulus

th annulus

inside radius of 1
outside radius of annular configuration of m annuli

outside surface area exposed per unit length

outsilde surface area exposed per unit length for annular configuration
probability of transmission

thickness of thin shell in thin shell and internal rod configuration

volume of absorbing material per unit length

volume of absorbing material per unit length in multiple annuli configu-
ration

exrror

angle between diameter through source and projection of neutron trajec-
tory on plane orthogonal to axis of symmetry through source

angle between diameter and tangent to inside of hollow shell (see
fig. 2)

unit vector in 6 direction

total path length to collision

projection of path length to collision on cutting plane
mean

(5

macroscoplic absorption cross section

total macroscopic cross section



Og standard deviation

® angle between neutron trajectory and projection of neutron trajectory on
plane orthogonal to axis of symmetry through source

5ﬁ unit vector in @ direction
Py neutron flux at surface of cylinder
) average flux within body

ANALYSIS

The Monte Carlo program assumes a nonscattering model, that is, each col-
lision constitutes an absorption. The cross sections used are either mono-
energetic or correspond to single-level resonances. The ratioc of the number of
absorbed neutrons to the total number of neutrons incident, which is the black-
ness of the configuration, is calculated and appears as output from the Monte
Carlo program; from the calculated blackness of a configuration one may calcu-
late the self-shielding factor.

An outline (fig. 1) chronologically associated with the flow diagram of
the Monte Carlo techniques used in this program will be followed in the analy-
sis. A neutron is generated with

. energy taken randomly from the
. MM|nmmmawsl neutron energy distribution l/E
in the interval from the minimum
Initialize energy to the maximum energy con-
i sidered. The following rejection

technique is used to produce this
distribution. First a neutron
energy 1is chosen in the energy in-

Compute geometric parameters

1

Compute cross section parameters terval from Epip to Egax by the
b - following formula:
Compute neutron associated param-| B
eters: energy, direction

Epneu = Bmin * Nr(Emax - Emin)

Compute material associated param-
eters: ofE), chord length

tI't Next the value of Npi4jy 1s com-
Compute distance pared to the value of the follow-

to collision i X
1 ing expression:
Compare distance to collision I
to chord length < Add to absorbed sum 1
1> = :
Add to history sum and add ®) Emin Eneu
to chord length sum No i = 1
Yes neu
(Covan) nin
Figure 1. - Generalized flow chart. If the value of Nr+l is less

than or equal to the value of the
expression, the value is accepted; otherwise the value Epgy 1s rejected and
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the entire process is repeated. The average of the process checked against the
expectation value is found to give excellent agreement, better than 0.1 percent
for ten thousand histories.

A cosine angular distribution of the incident-neutron number flux is used
as well as an isotropic incident-neutron distribution. The method used to
generate these distributions is similar to that of Cashwell (ref. 3). The ex-
pressions used are derived in appendix A.

An option of the program allows a constant cross section or resonance
parameter to be read in. When the single-level resonance absorption cross
sections are used, Doppler broadening is neglected, and the cross sections are

‘computed from the standard Breit-Wigner formula (refs. 4 and 5). In computing

the blackness over a representative Breit-Wigner resonance, a maximum energy
and a minimum energy are chosen. The program computes a blackness averaged
over a l/E neutron energy spectrum. The path length to collision is calcu-
lated in the usual manner

The thickness of material seen by the neutron (the optical thickness) f is
then calculated. This thickness of material is compared with the length A.
If AN dis longer than f, the neutron is not absorbed. If A 4is less than or
equal to f, the neutron is absorbed. The value of f for the hollow cylinder
1s computed from

1/2
2[Rl cos 6 - (RS - RS sin @) /]

cos @

f:
and for the thin shell and rod (fig. 2) from

. 1/2 ] 1/2
. 2[?1 cos 6 - (R% - R§“s1n29) / + (B%,:h?i,§1n29> /]
- cos @ o

The derivation of these expressions is shown in appendix B.

A self-shielding factor Fg 1is defined to be the ratio of the average
flux inside a body to the surface flux (ref. 6)

The inwardly directed current or number of neutrons per second striking a body
immersed in an isotropic scattering medium is ¢SS/4: where S 1is the outside
surface area of the body containing material of volume V and of macroscopic
absorption cross section ;. If T i1is the fraction of the incident neutrons
leaving the assembly, the blackness 1 - T is given by




Za @V _ ZaV .

1-T= o5 5 s
4: 4
or
7 l-7T 1-T
s s &2
a5
where
22V
E = —
' Configurations

Hollow cylinder and shell and rod configuration. - Self-shielding calcu-
lations are made for two geometric configurations. The thin cylinder with an
internal rod shown in figure 2 and the hollow cylinder are chosen because they
represent two extremes of Internal structure.
Since these configurations are not completely
specified by the parameter £, a particular
family i1s chosen to illustrate the differences
in self-shielding factors. The surface area
exposed per unit length is the same for both
configurations. The internal volume and den-
sity of absorber per unit length of both as-
semblies is held constant for each value of &.

For a hollow cylinder of outside radius
Ry, it is shown in reference 7 that

Aebsbeazed areas o .

£ = Ryxg COSZQJ_

where 07 is the angle between a diameter and

a line tangent to the inside wall of the hol-

low cylinder (see fig. 2). Thus, to vary &,

one can vary either the outside radius, the

C-70724 macroscopic absorption cross section, or the
amount of material inside the shell. The hol-
low cylinders calculated used the product

Figure 2. - Thin cylinder with internal rod configuration.  R72., = 1.0, a constant; thus, to vary &, the

amount of material inside the hollow shell is
changed, that is, the central hollow gradually is filled with material. As
g1 - 0, &£ » 1.0; for & = 1.0, under the foregoing conditions, a solid rod is

obtained.

The thin shell and rod cases shown in figure 2 used constant values of the
ratio of shell thickness to outside radius t/Rl of 0.0005 anpd 0.05. The 4if-
ference in mass between the thin shell and the hollow cylinder configuration
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appeared as the central rod of the thin shell and the central rod configura-
tion. Representative values of dimensions are shown in table I.

Multiple-body concentric cylindrical configurations. - Self-shielding cal-
culations are made for a seriles of concentric shells illustrated in figure 3.
The number of shells making
up the assembly is a param-
eter varied from 1 to 20;
the ratio of shell material

TABLE I. - REPRESENTATIVE DIMENSIONS FOR HOLLOW CYLINDERS

AND THIN SHELLS WITH INTERNAL RODS

volume to outside surface
Hollow cylinder Thin shell and v /S is held constant The
internal rod . ’
volume per unit length of
Surface- Outside | Radius of |Ratio of shell | Radius the annuli 1s given by
to-volume radius inner hol-' thickness to of in-
ratio of of hollow | low shell, | outside radius, | ternal m
Jump, cylinder, Rs, t / Ry rod,
S/V} Ry cm Rz, VA =1 E (rZi + r2i_l)
em=t cm cm i=1
2000 1.000 0.9995 0.0005 | mmmmmma
1667 .9994 0.01414 X (rog - roi.1)
1000 .9990 .03161
‘ggg '2328 ‘82223 where m 1s the number of
100 9900 13748 annulil, ros 1s Eﬁe outside
50 .9800 .19647 radius of the 1 shell,
a5 - 9600 -27821 and rp3.7 1is the inside
radius of the ith shell.
The outside surface area per unit length is

Sy = 2nrop

The volume-to-surface ratio is

m
E (rgi + r2i-1)(r2i - r2i-1)

v_Va_i=1
S Sa 21‘2m
and
- m -
z : (rps +rp5.1Mrps - vp5.7)
C-70725 2m
Figure 3. - Concentric cylindrica! annuli configuration. L -~

For a given £ there is a rather varied choice of geometries; that is, & does
not completely specify an annular cylindrical geometry. The following ancil-
lary conditions were added to specify the geometry of the annuli.



(1) The cylindrical thickness for a given configuration containing m
cylinders shall be equal; that is,

roj - roj1 =t (i = 1,2,3,. . .,m)

(2) The spacing between cylinders for a given m shall be equal. For
example, the distance from the z-axis of symmetry to the outside of ring 1 is
just one-half that to the outside of ring 2.

(3) The ratio V/S is held constant, while the number of rings is allowed
to vary.

(4) For a given m and V/S, Z is varied to change the value of &.

(5) The outside radius of all concentric cylindrical configurations con-
sidered herein is chosen at 1.5 inches.

The foregoing conditions spec-

TABLE II. - DIMENSIONS OF MULTIPLE ] ; - -
ify the concentric ring geometries.

CONCENTRIC CYLINDERS The values of the radii chosen are
shown in table II. The values of
Numbexr OL‘J.tSlde ra- Thlcknesg Spac%ng of m, é, and FS are shown in
of dius of con- | of annuli, | annulil (out— table IIT A . . .
rings | figuration, cm side radius ab.e : cosine incldent angu-
em to outside lar neutron number flux is used.
radius},

cm

20 3.81 0.0240 0.1905

Concentric Cylinders of

10 .0461 .3810

6 0728 -6350 Resonance Absorbers

4 .1024 .9525

3 .1280 1.2700 .

2 11720 1.9050 The Monte Carlo program is also
1 L2590 | —----- executed for a representative reso-

nance (AglO® at 5.20 ev) (see

ref. 4). Values of the radii chosen
are shown in table IV. To 1llustrate the sensitivity of the results to
incident-angular-flux distributions, an isotropic incident-neutron case was
also calculated.

.- - FOR . . .
TABLE ITI SELF~-SHIELDING FACTORS Statistical Analys is

CYLINDRICAL CONFIGURATTONS . )
Given a neutron, there is a

Number Values of & probability T that it shall be
of transmitted through the assembly
rings 0.10 0.20 0.30 0.40 0.50 and a probability P=1-T
1 0.875(0) | 0.775(2) | 0.696(3) | 0.631(6) |0.574(0) that it will not.be tragsmltted.
2 885(5) | .789(2) | .708(8) | .e42(0) | .s84(9)| et mn  stochastically independ-
3 .900(7) | .798(9) | .713(3) | .645(7) | .587(4)| ent neutrons be injected into
4 .891(5) | .796(1) | .720(4) | .652(1) | .589(8)| the system; then, x neutrons
6 891(4) | .797(2) | .719(1) | .e51(1) | .594(5) . ’ L
10 soa(s) | .soa(z) | .721(s) | .652(0) | .593(9) will be transmitted. These are
20 .902(5) | .802(9) | .720(3) | .s50(0) | .594(2)| precisely the postulates neces-
) .88502 .79303 .71649 .65162 .59595 sary for the generation of a

8Cosine incident. binomial distribution (ref. 8).



TABLE IV. - DIMENSIONS OF -RESONANCE CONFIGURATION In order to calculate the first
two moments of the binomial distribu-

Number | Outside ra- | Thickness émmingof tion, the following formulas are used:
of dius of con- | of annuli, | annmuli (out-
rings figuration, cm side radius p = nT
cm to ocutside
radius) .
om where p is the mean and
20 1.000 0.0005238 0.0500000 O = |/ngj?
18 .0005787 . U555556 S
16 .0006469 . 0625000 . .
14 .0007332 0714286 where 0g 1s the standard deviation.
12 0008461 .0833333 Thus, the best estimate of T 1is
10 .0010000 . .1000000
8 .0012224 .1250000
6 .0015721 .1666667 =2
5 .0018345 .2000000 n
4 .0022019 .2500000
3 .0027532 3333333 . R
2 0036723 5000000 and the best estimate of o0g is
1 Y .0055102 |  mmemoea-

Hence, the fractional error associated with one standard deviation is

% _ +/nTF _ [P
nT -

IT nT
Since
Fg = ; 'ﬁ
IS
The fractional error of Fg 1is
BF ) 1 5T
Fg %, 4é_v T
For example, if n = 10,000, T = 0.75, and [%a(4V/s)|™ = 5.33,
s _ (p, o\t B
Fs (a s> nT

Il

3.33 X 0.57 percent

It

1.90 percent

Hence 1.90 percent is the percentage error associated with one standard devia-
tion. The errors given to the Monte Carlo results have been calculated in this
manner and are standard deviations. These standard deviations are somevhat
smaller than the symbols marking the data unless otherwise shown.



RESULTS AND DISCUSSION ~

Self-shielding factors calculated for two extreme geometric configura-
tions, the thin cylinder with an internal rod and the hollow cylinder (see
fig. 2, p. 6) are presented in figure 4 as a function of §. A large differ-
ence in Fg for these cases is obtained at the smaller values of §&. These

HARRRRE

Rod
——— — Hollow rod

\ ————— Shell and rod tR} = 0.0005
N\ ———— Shell and rod t/R;=0.05

o
—/
/
!
!

—
7/
Z/

/’//’
I/l
//

g \\ N

5 N SN

=)

g 7 NN X

o h ~N \\

g \ N ~N
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= N N N

= \ F\\ \

? L ~ . \\

@ \‘\\\ \~\
[ . P~ b =y

’ I s S Y
- \\‘\\\-7\\\:\\
4 \“\
\\
0 1 2 3 4 .5 .6 7 8 9 1.0 L1 12
£

Figure 4, - Self-shielding factors for cylindrical configurations with cosine incident angular flux,

calculated values are compared with exact results for rods (refs. 7 and 9).
For the chosen geometries, the configurations correspond to rods at £ =1 and
cross the exact solution here.

The hollow cylinder has its mass concentrated toward its periphery, while
the thin cylinder and intermnal rod has its mass concentrated near the center of
the structure; for a cosine incident-apgular-flux distribution, therefore, the
average chord length is longer for the latter case, and thus the self-shielding
effect is greater. (As can be seen from figure 4, the largest discrepancy in
the correlation lies in the range 0.00 < ¢ < 0.50.) It is evident that the
parameter € = (ZV/S)Za does not correlate the self-shielding factors in cyl-
indrical configurations with large variations of internal structure.

For multiple body concentric cylinders, results are shown in figures 5
and 6 for the range ¢ = 0.00 to & = 0.50. As noted before, the annuli are
chosen all of the same thickness and equally spaced. The outside diameter, a
constant, chosen for the outermost annulus was 3.0 inches. The ammular dimen-~
sion remained a constant (see table II, p. 8), and the cross section 2y was
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Number of annuli, m

Figure 5. - Self-shielding factors plotted against number of annuli,

varied to change £. Results for Fg are shown in table III. As can be seen
in figure 5, the self-shielding factors tend to approach the solid rod asymp-
tote for large values of £. For low values of &, the self-shielding curves
for multiple annuli exceed the solid rod asymptote. This effect may well be
due to streaming across the internal voids. As the blackness of the array is
increased, this effect ceases to be important. For large numbers of rings, the
curves approach the self-shielding factors for rods. It appears that, for the
range of variables studied, the self-shielding factors for the multiple concen-
tric cylinders is reasonably well approximated by the equivalent solid rod
self-shielding factors as prescribed by the £ correlaticn.

The results shown in figure 7 present the blackness factors averaged over
a Breit-Wigner resonance and a l/E neutron energy distribution. The value of
V/S is kept constant at 0.0055 centimeter and the number of cylinders is
varied from 1 to 20.

11



1.00

.95

p=a

.90

.80

-

.15

Self-shielding factor, FS

.70

.65

.60

o

a”

/
o

3

!

h

1
Solid rod

—-o-— Single ring—1—
—-—+w-— 20rings

Figure 6. - Self-shielding factors for multiple cylindrical configurations.
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Blackness factor

I

Blackness factors,
rather than self-shielding
factors, are plotted inasmuch
as a simple representative
value of £ over an entire
resonance cannot be obtained.

The blackness for an
isotropic angular-flux distri-
bution is compared with the
blackness obtained using a
cosine incident angular dis-
tribution. The isotropic
distribution is introduced as
a mathematical device to as-
certain the effect of a change
in angular distribution on
the blackness factor averaged
over a Breit-Wigner resonance
line shape and a 1/E energy
spectrum.

The change in blackness
is more sensitive to an iso-
tropic incident flux than to
a cosine incident flux, as
shown in figure 7, for smaller
numbers of annuli. The
greatest difference between
the cosine angular and the
isotropic angular-incident-
flux distributions occurs for
a single annulus, but the so-

g
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Figure 8. - Blackness factors plotted against number of annuli
for monoenergetic flux.



lution appears to converge for large numbers of concentric cylinders. In order
to ascertain whether this apparent convergence is real, monoenergetic blackness
factors are computed and are shown in figure 8. These results indicate that,
if the resonance calculations had been done for a larger number of annuli, the
blackness factor curves would cross.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, July 29, 1964
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APPENDIX A

DERIVATION OF ANGULAR DISTRIBUTIONS

The results of the following derivation were used to obtain an isotropic
neutron-angular-flux distribution. A differential element of area dA in
spherical coordinates can be written

A = r% gin © 4% a0

If r =1 and polar coordinates are used, the following identities may be in-
troduced (see fig. 9):

u = cos o

cos B

<
fll

W =cos Y

By simple transformation,

r=p=1 de = dr
r =29 4o = dv
v ==cos B =6 dw = -sin ¢ 4o
(a) Polar coordinate system. (b} Cartesian coordinate system, w = cos O
Figure 9. - Coordinate systems.
and

dA = sin © 40 dO = -dw dv
The probability density function of w, p(w) dw can be written

2 .
P(W) dw_:ZI(I' Sll’l@d@:_g__sin@dq)z

4ﬂr2 2

aw (A1)

DN

If Ny d1s a random number, the solution of equation (Al) gives the method
of choosing w for an isotropic distribution

W w

_ Logut o Lot -1
N, = J/. 5 aw = S =3 (w+ 1)
L1 1

and

w———ZNr‘l

14



Thus w of the set u, v, and w can be selected.
Since gu is orthogonal to the vector Bu’ ® can be obtained indepen-

dently. The fact that €6 may range from -n to =n with equiprobability
means the value of 6 can be determined in the following manner:

6 6 .1
B tyaal ae’ 1
Ny = L P(e')as’ = L il (6 + x)

6 = n(2N, - 1)

and

A cosine distribution may be gained by the following substitution:

p(w) = 2w
by definition and

p(w) dw = 2w dw

Let

Hence

15



APPENDIX B

DERIVATION OF NEUTRON PATH LENGTH IN MATERTAT

The equation used to calculate the path length in material shall be de-
rived in this appendix. ¥First consider the section at a cutting plane perpen-

dicular to the infinite hollow rod (see fig. 10). This figure is composed of
two concentric circles A and B with radii R; and

Ro, respectively, as well as the projection into the
cutting plane of a neutron trajectory A'A".

The distance A'A" must first be obtained, and
then the distance B'B" subtracted. Choosing the point
A' as the origin of the coordinate system and writing
the equation for A'A" in terms of R; and € result
in the following equation:

Figure 10. - Section at cutting plane. A'A" = 2Ry cos 6 (B1)

The equation for the circle B in terms of Rj, Rp,
and € is

2_ 2., 52
Ry = r° + R} - 2rR) cos 6 (B2)

where (r,0) is the polar vector that describes the circle B' from A', the
origin. Solving for r gives

- 2 2 5 _ (p2 _ w2
r =Ry cos 0 & ‘/él cos® 6 (Rl RZ) (B3)
Since cos?9 - 1 = —sinze,
> :
r =Ry cos 6 % \/RE - R7 sin’o (B4)

which describes the cirele B. Hence

BIB" = 2‘/R§ - B2 sine (B5)

Thus the expression for the projection of the path length on the cutting plane
is

) 2 o2 12
2R cos 6 - 2 ‘/R2 RZ sine (Bs)

When the projection intersects an inner rod or annulus, the Ffollowing expres-
sions (which may be obtained from eq. (BS)) are used (see fig. 11):

cret = 2 ‘/Rg - R2 5inZ0 (B7)

16



DD - BB = 2 ‘/{% - RZ sin6 - ‘/RZ - R? 5in%0 (B8)

Once the length of the entire projection MNp (on the material in the cut-
ting plane) has been computed, the chord length A is calculated by the follow-
ing formula:

where @ is the angle the neutron veloclty vector makes with the cutting plane.

Figure 11 - Projection of neutron trajectories through various configurations.

17
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